Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis.

نویسندگان

  • Jessica L Zambonin
  • Chao Zhao
  • Nobuhiko Ohno
  • Graham R Campbell
  • Sarah Engeham
  • Iryna Ziabreva
  • Nadine Schwarz
  • Sok Ee Lee
  • Josa M Frischer
  • Doug M Turnbull
  • Bruce D Trapp
  • Hans Lassmann
  • Robin J M Franklin
  • Don J Mahad
چکیده

Mitochondrial content within axons increases following demyelination in the central nervous system, presumably as a response to the changes in energy needs of axons imposed by redistribution of sodium channels. Myelin sheaths can be restored in demyelinated axons and remyelination in some multiple sclerosis lesions is extensive, while in others it is incomplete or absent. The effects of remyelination on axonal mitochondrial content in multiple sclerosis, particularly whether remyelination completely reverses the mitochondrial changes that follow demyelination, are currently unknown. In this study, we analysed axonal mitochondria within demyelinated, remyelinated and myelinated axons in post-mortem tissue from patients with multiple sclerosis and controls, as well as in experimental models of demyelination and remyelination, in vivo and in vitro. Immunofluorescent labelling of mitochondria (porin, a voltage-dependent anion channel expressed on all mitochondria) and axons (neurofilament), and ultrastructural imaging showed that in both multiple sclerosis and experimental demyelination, mitochondrial content within remyelinated axons was significantly less than in acutely and chronically demyelinated axons but more numerous than in myelinated axons. The greater mitochondrial content within remyelinated, compared with myelinated, axons was due to an increase in density of porin elements whereas increase in size accounted for the change observed in demyelinated axons. The increase in mitochondrial content in remyelinated axons was associated with an increase in mitochondrial respiratory chain complex IV activity. In vitro studies showed a significant increase in the number of stationary mitochondria in remyelinated compared with myelinated and demyelinated axons. The number of mobile mitochondria in remyelinated axons did not significantly differ from myelinated axons, although significantly greater than in demyelinated axons. Our neuropathological data and findings in experimental demyelination and remyelination in vivo and in vitro are consistent with a partial amelioration of the supposed increase in energy demand of demyelinated axons by remyelination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acutely damaged axons are remyelinated in multiple sclerosis and experimental models of demyelination

Remyelination is in the center of new therapies for the treatment of multiple sclerosis to resolve and improve disease symptoms and protect axons from further damage. Although remyelination is considered beneficial in the long term, it is not known, whether this is also the case early in lesion formation. Additionally, the precise timing of acute axonal damage and remyelination has not been ass...

متن کامل

Re-expression of PSA-NCAM by demyelinated axons: an inhibitor of remyelination in multiple sclerosis?

Multiple sclerosis is affecting approximately 1 out of every 1000 individuals in the western world. After axons are denuded of myelin in the early stages of the disease, remyelination occurs, but eventually this process fails, and permanent disability is the result. During development, the polysialylated form of the neural cell adhesion molecule NCAM, PSA-NCAM, is expressed at the axonal surfac...

متن کامل

Signaling through ERK1/2 controls myelin thickness during myelin repair in the adult central nervous system.

Oligodendrocytes, the myelin-forming cells of the CNS, exquisitely tailor the thickness of individual myelin sheaths to the diameter of their target axons to maximize the speed of action potential propagation, thus ensuring proper neuronal connectivity and function. Following demyelinating injuries to the adult CNS, newly formed oligodendrocytes frequently generate new myelin sheaths. Following...

متن کامل

Mitochondrial changes within axons in multiple sclerosis.

Multiple sclerosis is the most common cause of non-traumatic neurological impairment in young adults. An energy deficient state has been implicated in the degeneration of axons, the pathological correlate of disease progression, in multiple sclerosis. Mitochondria are the most efficient producers of energy and play an important role in calcium homeostasis. We analysed the density and function o...

متن کامل

Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis.

Saltatory conduction in myelinated fibres depends on the specific molecular organization of highly specialized axonal domains at the node of Ranvier, the paranodal and the juxtaparanodal regions. Voltage-gated sodium channels (Na(v)) have been shown to be deployed along the naked demyelinated axon in experimental models of CNS demyelination and in multiple sclerosis lesions. Little is known abo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 134 Pt 7  شماره 

صفحات  -

تاریخ انتشار 2011